Description
At Sixe Engineering we have been providing official IBM training around the world for over 12 years. Get the best training from our specialists in Europe. We have important discounts and offers for two or more students.
Course details
IBM course code: 0A028G | Category: IBM SPSS Modeler / IBM SPSS Modeler |
Delivery: Online & on-site** | Course length in days: 1 |
Target audience
Roles: Business Analyst, Data Scientist
Specifically, this is an introductory course for:
• Anyone who is interested in getting up to speed quickly and efficiently using the IBM SPSS Modeler forecasting capabilities
Desired Prerequisites:
• Familiarity with the IBM SPSS Modeler environment (creating, editing, opening, and saving streams).
• General knowledge of regression analysis is recommended but not required
Instructors
The great majority of the IBM courses we offer are taught directly by our engineers. This is the only way we can guarantee the highest quality. We complement all the training with our own materials and laboratories, based on our experience during the deployments, migrations and courses that we have carried out during all these years.
Added value
Our courses are deeply role oriented. To give an example, the needs for technology mastery are different for developer teams and for the people in charge of deploying and managing the underlying infrastructure. The level of previous experience is also important and we take it very seriously. That is why beyond (boring) commands and tasks, we focus on solving the problems that arise in the day to day of each team. Providing them with the knowledge, competencies and skills required for each project. In addition, our documentation is based on the latest version of each product.
Agenda and course syllabus
1: Introduction to time series analysis
• Explain what a time series analysis is
• Describe how time series models work
• Demonstrate the main principles behind a time series forecasting model
2: Automatic forecasting with the Expert Modeler
• Examine fit and error
• Examine unexplained variation
• Examine how the Expert Modeler chooses the best fitting time series model
3: Measuring model performance
• Discuss various ways to evaluate model performance
• Evaluate model performance of an ARIMA model
• Test a model using a holdout sample
4: Time series regression
• Use regression to fit a model with trend, seasonality and predictors
• Handling predictors in time series analysis
• Detect and adjust the model for autocorrelation
• Use a regression model to forecast future values
5: Exponential smoothing models
• Types of exponential smoothing models
• Create a custom exponential smoothing model
• Forecast future values with exponential smoothing
• Validate an exponential smoothing model with future data
6: ARIMA modeling
• Explain what ARIMA is
• Learn how to identify ARIMA model types
• Use sequence charts and autocorrelation plots to manually identify an ARIMA model that fits the data
• Check your results with the Expert Modeler
Do you need to adapt this syllabus to your needs? Are you interested in other courses? Ask us without obligation.
Locations for on-site delivery
- Austria: Vienna
- Belgium: Brussels, Ghent
- Denmark: Cophenhagen
- Estonia: Tallinn
- Finland: Helsinki
- France: Paris, Marseille, Lyon
- Germany: Berlin, Munich, Cologne, Hamburg
- Greece: Athens, Thessaloniki
- Italy: Rome
- Louxemburg: Louxembourg (city)
- Netherlands: Amsterdam
- Norway: Oslo
- Portugal: Lisbon, Braga, Porto, Coimbra
- Slovakia: Bratislava
- Slovenia: Bratislava
- Spain: Madrid, Sevilla, Valencia, Barcelona, Bilbao, Málaga
- Sweden: Stockholm
- Turkey: Ankara
- United Kingdom: London